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Abstract. The epidemic threshold of a spreading process indicates the condition for the occurrence of the
wide spreading regime, thus representing a predictor of the network vulnerability to the epidemic. Such
threshold depends on the natural history of the disease and on the pattern of contacts of the network with
its time variation. Based on the theoretical framework introduced in [E. Valdano, L. Ferreri, C. Poletto,
V. Colizza, Phys. Rev. X 5, 21005 (2015)] for a susceptible-infectious-susceptible model, we formulate here
an infection propagator approach to compute the epidemic threshold accounting for more realistic effects
regarding a varying force of infection per contact, the presence of immunity, and a limited time resolution
of the temporal network. We apply the approach to two temporal network models and an empirical dataset
of school contacts. We find that permanent or temporary immunity do not affect the estimation of the
epidemic threshold through the infection propagator approach. Comparisons with numerical results show
the good agreement of the analytical predictions. Aggregating the temporal network rapidly deteriorates
the predictions, except for slow diseases once the heterogeneity of the links is preserved. Weight-topology

correlations are found to be the critical factor to be preserved to improve accuracy in the prediction.

1 Introduction

The concept of epidemic threshold is fundamental in infec-
tious disease modeling [1,2]. When a pathogen is seeded in
a population, a critical transmissibility exists below which
the spread rapidly ceases. Such a threshold is a combined
property of the disease natural history and of the network
of interactions along which transmission can occur. In the
physics literature such interplay has been typically stud-
ied for the family of susceptible-infected-susceptible and
susceptible-infected-recovered models on networks [3-11].
Several analytical approaches based, for instance, on the
heterogenous mean field approximation [3], on percolation
theory [6,7] and on Markov processes [4,5] have been de-
veloped to study the transition from early extinction to
epidemic.

Extensive work has been done under the assumption of
spreading time scales either much slower or much faster
than the one characteristic of the underlying network —
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the two regimes called annealed and quenched, respec-
tively [3,5]. In recent years, the massive amount of em-
pirical information on networks has showed that such as-
sumption does not hold in many cases [12-19] and that the
network dynamics presents features (e.g. memory, bursty
activation, heterogeneities in node activity) affecting the
resulting spreading processes [13,14,18,20-28].

The majority of studies addressing so far the impact of
network dynamics on the epidemic spread through the an-
alytical calculation of the epidemic threshold are all based
on synthetic models of the network evolution, valid under
context-specific assumptions [21,24-29]. To fill this gap,
we have introduced in reference [30] a method to com-
pute the epidemic threshold for a susceptible-infectious-
susceptible (SIS) process on a generic discrete-time tem-
poral network, assuming the knowledge of its sequence of
adjacency matrices. The approach is rooted in a multi-
layer representation [31,32] of the temporal network that
preserves the network causality. It employs a tensor for-
mulation that integrates both spreading and network
dynamics and allows for the analytical solution of the lin-
earized Markov chain description of the spreading pro-
cess. Such framework extends in this way the quenched
approach to the time-varying case, through a multilayer
transformation.
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The lack of assumptions on the network substrate
makes such a tool a candidate for assessing the vulner-
ability to epidemic invasion of real systems for which
time-varying contact data relevant for epidemic trans-
missions are collected [13-19,33-36]. At the same time,
it allows a systematic exploration of the structural and
temporal factors characterizing the time-evolving network
that are responsible for sustained spreading. To allow
the use of this framework to a variety of different set-
tings and epidemic conditions, we assess here the appli-
cability of the approach in describing realistic diseases
and its robustness with respect to network properties
induced by data collection procedures and availability.
By considering empirical and synthetic model contact
data, we discuss how a varying force of infection along
a given link and its direction impact the computation
of the threshold for a SIS dynamics. Then, we formulate
the approach for more realistic disease natural histories,
considering susceptible-infectious-recovered (SIR) and
susceptible-infectious-recovered-susceptible (SIRS) com-
partmental models. This allows us to account for an ad-
ditional ingredient — immunity following infection, either
permanent or temporary — representing an important fea-
ture of many diseases. Finally, we address the problem of
limited temporal resolution in the knowledge or availabil-
ity of the network dynamics, for which contacts occurring
within a given time interval are aggregated [37]. By fo-
cusing on an empirical network of time-varying contacts
among individuals at school, we quantify the accuracy and
reliability of the estimation of the epidemic threshold test-
ing increasing aggregations, to provide quantitative and
qualitative information on the specific temporal structures
responsible for observed biases.

2 Infection propagator approach
for a weighted directed temporal network

We consider a SIS model [1,2] where hosts, represented by
nodes in the network, can be either in the susceptible or in-
fectious state. We assume the process to unfold in discrete
time on a weighted directed temporal network, comprising
a finite number 7" of snapshots, each one with a weighted
adjacency matrix W;. The entry Wy ;; encodes the weight
of the directed link from 7 to j at time step t. At each
time step, infectious nodes spontaneously recover with
probability u, returning to the susceptible state. While
infectious, nodes can transmit the infection to suscepti-
ble neighbors with a probability that depends both on the
weight of the link and on the intrinsic transmissibility of
the pathogen A, representing the probability of transmis-
sion when link weight is equal to 1. We model this by
introducing a transmission matrix A, function of both A
and W, that encodes transmission probabilities. When
the network is unweighted (W;; = A = 0,1), the en-
tries of the matrix A, are simply given by A:;; = MA; ;.
If the network is weighted, several choices are possible
to model transmission along the weighted link. Here we
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consider a binomial process for the infection

Apij=1-(1- )\)Wt’ij ) (1)
as it is typically assumed, for example, in the spread
of livestock infections between premises where the
weight represents the number of animals moved between
farms [38], or in the context of social networks, where
weight may encode force-of-infection in terms of either
contact frequency or duration [39].

We start from the microscopic Markov chain approach,
or quenched mean field approach, developed for static net-
works [4,5]. According to this, the equations describing
the SIS propagation on a generic static network with N
nodes and adjacency matrix W are

pri=1—[1—(1—p)pi—1, H (1= Ajipe—1,5) ,
J

(2)

where p; ; is the probability that node 7 is in the infectious
state at time ¢, and A is the static transmission matrix. We
remark that equation (2) relies on the assumption that no
dynamical correlations exist among infection probabilities
of neighbouring nodes [40].

The microscopic Markov chain model of equation (2) is
widely adopted in different fields [8,41]. For both directed
and undirected networks [42,43] the study of its asymp-
totic state yields the derivation of the epidemic threshold
in terms of the spectral radius of the transmission matrix
p[A], namely the modulus of the largest eigenvalue of A.
The threshold is the value of A for which the following
holds: p[A] = p. In the unweighted case, this is equivalent
to the well-known relation (A/p) = 1/p[A], where p[A] is
the spectral radius of the adjacency matrix [4,5].

In order to extend this approach to temporal networks
we need to take into account the time dependence of A.
The Markov chain equations of the process read in this
case:

pri=1-[1=0—pperi [[ (0= A1jipe-1). (3)
i

We enforce the existence of the asymptotic solution of the
infection process in a generic temporal network by impos-
ing periodic boundary conditions for network dynamics,
i.e. Wpriy = Wy Given that T is arbitrary, this causes
no loss in generality. We also tested that it would affect the
epidemic threshold estimation only for rather small values
of T, also when complex temporal dynamics are consid-
ered [30]. Contrary to the static case, now the asymptotic
solutions of equation (3) are periodic of period T

We develop the formalism introduced in reference [30],
and compute the epidemic threshold for a generic weighted
directed temporal network. We define a new representa-
tion of the SIS dynamics on a temporal network by em-
ploying a multi-layer representation [31,32,44]. We map
the temporal network to the tensor space RY @ R”, where
each node is identified by the pair of indices (i,t), cor-
responding to the node label ¢ and the time frame t, re-
spectively. Layer ¢ thus contains the images of the nodes
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temporal multilayer

P

Fig. 1. Multi-layer representation of the temporal network.
We consider a temporal network of 3 nodes and 2 time steps
(left). This network is mapped onto a multi-layer representa-
tion (right). Each node points to its future self (orange arrows),
and to the future image of its present neighbors (black arrows).

@

corresponding to time step ¢t. The specific multi-layer rep-
resentation of the temporal network is built according to
the following rules [30]:

(i) each node, at time ¢, is connected to its future self-
image at time t + 1;

(ii) if 7 is connected to j at time ¢ with weight w, then
we connect ¢ at time ¢ to j at time £ + 1, and j at
time t to ¢ at time ¢ + 1, both with weight w.

These rules define a tensor representation of a weighted
multilayer network [32,45]. We stress that no links con-
nect nodes on the same layer, as contacts in the temporal
networks are mapped onto the inter-layer links of the mul-
tilayer object (rule (ii)). The resulting network is thus mul-
tipartite, since only pairs of nodes belonging to different
layers are linked together. Figure 1 provides a schematic
representation of this multilayer mapping. The adjacency
representation of the resulting multilayer network has as
entries th/,ij = O¢p41[0i5 + Weis]. The proposed map-
ping from the network temporal sequence to a multilayer
object provides an ad hoc representation of the tempo-
ral network that preserves the causality of the temporal
network and that it lends itself to the integration of the
infection and recovery processes. The transformation for
the links (rule (ii)) is similar to the one introduced in ref-
erence [46], and is here introduced to model the infection
process along a time-stamped link. In addition, we also
need to consider the connection between each node and
its future self (rule (i)) to model the recovery process of
each infected node. We can therefore define the transmis-
sion tensor M, whose entries are defined as:

My i = 0p41 [(1 — ) 035 + Ay ij] - (4)
M contains the transmission terms A; and the recov-
ery term. M also introduces a simplified expression for
equation (3). Using the supra-adjacency matrix formal-
ism [31,47,48], we can flatten out the multilayer represen-
tation using the following mapping: (i,t) — o = Nt + i,
with « running in {1,..., NT'}, allowing us to write M in
matrix form

0 1—p+Aq 0 0

0 0 1—p+As - 0

M= : :
0 é 0 17[1.+'AT71

1—p+Ar 0 0 0
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M provides a representation of the topological and tem-
poral dimensions underlying the dynamics of equation (3),
in terms of a NT x NT transmission matrix that encodes
both pathogen transmission and recovery. The Markov
process is now represented in RY” by the state vector
Pa(T), i.e. the probability of each node to be infectious
at each time step ¢ included in a 1-period long interval,
[7T, (7 + 1)T]. Consistently, equation (3) becomes

Pa(r) =1 =[] 11 = Mpaps(r - 1)]. ()
B

Given that vector p encodes a 1-period configuration, the
T-periodic asymptotic state of the SIS process is now
mapped into the steady state po(7) = po(7—1). The latter
can be recovered as solution of the equilibrium equation:

Pa=1—J] (1 = Mpapp), (6)
B

that is formally the same as the stationary condition im-
posed on equation (2) for the static network case and is
similar to Markov chain approaches used to solve con-
tagion processes in multiplex and interconnected net-
works [47-49]. Given that equation (6) formally describes
a diffusion process on a static network of NT nodes, we
can then follow [4,5] and linearize equation (6) recover-
ing the necessary and sufficient condition for the asymp-
totically stable disease-free solution, p [M] < 1 [50]. This
yields the threshold condition

pIM] = 1 (7)
for the critical value of A above which the transmission
becomes epidemic [4,5,47-49]. Given the block structure
of the matrix, it is possible to simplify the computation
of the spectral radius of M [51]:

pM]=p[P]"/" 8)

where

P =
t

(I—p+A). (9)

In the case of unweighted undirected network, P becomes
P = [T, (1—p+ AA;) [30]. This matrix has an im-
portant physical interpretation. Let us consider a time-
respecting path from ¢ to j, lasting 71" time steps and con-
taining a jumps and 7' — a waiting times. We associate to
this path the weight \%(1 — u)?' ¢, representing the prob-
ability that the infection propagates along that path, from
1 infectious at time ¢ = 1 to j infectious at time t = T.
The entry F;; is then the sum of all the time-respecting
paths going from (i,t = 1) to (j,t = T), each weighted as
described. Therefore, it represents the total probability of
J being infectious at time ¢ = T', given that the infection
originated in ¢ infectious at time ¢t = 1. This is valid in
the limit of small probabilities and non-interaction among
paths. P thus describes the infection propagation around
the disease free state (i.e. p ~ 0) and within the quenched
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mean field framework where interactions among paths are
disregarded. In light of this interpretation, we call P infec-
tion propagator. The accessibility matrix, defined in ref-
erence [52], is a particular case of infection propagator,
when A = p =1, i.e., when the spreading process is a de-
terministic exploration of the temporal network. The gen-
eralization to weighted networks is straightforward once
the force of transmission on each link of equation (1) is
taken into account.

3 Infection propagator approach for SIRS
and SIR dynamics

Many pathogens leave recovered individuals immune to
reinfection. Such immunity may last indefinitely, or for a
limited amount of time and is modeled through the in-
troduction of an additional compartment, the recovered
(R) state [1,2]. Infectious nodes enter the recovered state
with probability p, becoming immune to re-infection. We
also consider that they leave this state with probability
w, returning to the susceptible state. Any value of w > 0
describes a SIRS model, characterized by an average im-
munity period 1/w. w = 0 corresponds instead to the
SIR model, where immunity is assumed to be permanent.
Markov chain equations for the SIRS model are as follows:

pri = (1= p)pi—1,i
+ (1=pt—1,i—qt—1,i) {1—Hj (I=A—1jipe-1,5) |

Qi = Wpr—1, + (1 — w)ge—1,.

(10)
In addition to py ;, we define ¢ ; as the probability of being
in the recovered state at time t. The computation of the
threshold is equivalent to the study of the stability of the
disease-free state p;; = 0 [4,5]. Equations are therefore
linearized around that point, making all quadratic terms
disappear. In the case of the SIRS model, the disease-free
state is p;; = ¢1,; = 0 whose stability is now studied by
linearizing in both p;; and ¢ ;. The linearized form of
equation (10) is the following:

{pt,i ~ > (A g+ (1= p)dij) pe—1,5 (11)

Qi = Ppr—1, + (1 — w)ge—1.

From this we see that the equation for p; no longer con-
tains q;, showing that the evolution of the number of in-
fected around the disease-free state does not depend on the
recovered individuals. This in turns implies that the recov-
ered compartment does not impact the epidemic thresh-
old, as in the static case [53,54]. As a result, the same in-
fection propagator describing the SIS dynamics (Eq. (9))
can be used to compute the epidemic threshold of a SIRS
compartmental model on a time-varying network.

The SIR model can be considered as a limiting case
of the SIRS dynamics (w — 0). The infection propagator
for the SIRS model does not depend on the probability of
waning of immunity w, as it only contains expressions in
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terms of A and p. The threshold computed with the infec-
tion propagator approach for the SIRS therefore holds for
any arbitrarily small w. As a result, we can safely perform
the following limit:

SIRS

)\SIR _ hHlOA __\SIRS
w—

critical

— )\SIS

critical

critical — critical — (12)
Both SIRS and SIR models thus have the same threshold
as the SIS compartmental model, not being affected by the
recovery compartment and the duration of the immunity
period.

4 Application to empirical and synthetic
model data

We test the validity and accuracy of our predictions by
comparing them with the results of explicit microscopic
stochastic numerical simulations of the SIR and SIRS pro-
cesses. We consider two temporal network models and one
empirical time-varying network. In the following subsec-
tions we describe the data and methods considered and
the corresponding results.

4.1 Empirical and synthetic model data

We test our approach on two network models: ACTIVITY
and BURSTY models. ACTIVITY is built from the activity-
driven model proposed by Perra et al. in reference [25].
Each node is given an activity potential, drawn from a het-
erogeneous distribution. At each time step, nodes become
active with a probability equal to their potentials. Active
nodes establish mgt,p (here mgt,p = 2) connections with
other nodes picked at random, and all links are renewed
at every snapshot. We generate networks with N = 1000
nodes and T = 20 time snapshots, as in reference [30].
In addition, we explored size effects by considering net-
works with sizes ranging from N = 10% nodes to N = 10*
nodes. Activity potentials are assigned through the rela-
tiona =1—e"™, (n=10) and z ~ =7 and = € [¢ 1]
(y = 2.8 and € = 3 x 1072). The obtained networks are
characterized by a temporally uncorrelated sequence of
snapshots yielding an aggregated network with heteroge-
nous topology.

BURSTY is obtained from the model introduced by
Rocha and Blondel in reference [20]. Here, the probabil-
ity of a node becoming active at time step t is sampled
from the distribution (£ — #/)~*1e=*2(¢=) where ¢’ is the
time that node was last active. We consider networks of
size N = 500 and described by T" = 50 time snapshots,
generated with oy = 2 and as = 5 x 107 as in refer-
ence [30]. The obtained networks account for a heteroge-
neous activation pattern describing a sequence of homoge-
neous networks where the inter-contact time is power-law
distributed.

In addition to the synthetic models above, we con-
sider an empirical time-evolving network constructed from
records of face-to-face proximity interactions between in-
dividuals in a high school during one day, collected by
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Fig. 2. Evolution of fraction of infected nodes (disease preva-
lence) for all considered disease models and networks. In all
panels p = 0.5. For SIRS, w = 0.75. X is set at 5/2 of the epi-
demic threshold. This is an arbitrary value allowing us to show
the typical behavior well above threshold. Median prevalence
(solid black lines), and 50%,95% confidence intervals (gray
shaded areas) are computed on 200 runs, keeping only the ones
not going extinct in the beginning.

Salathé et al. [55] (scHOOL). This network comprises
N = 787 nodes and we consider here 7" = 42 time snap-
shots, each one of 10 min. In Section 5 we will also examine
the impact of a finer aggregation time.

4.2 Numerical simulations

We numerically simulate the disease diffusion of a SIR
and of a SIRS infection dynamics on the above described
networks. Simulations assume all individuals to be suscep-
tible at the initial time, and are seeded with an infected
node chosen at random on the network. At each time step,
infectious nodes can transmit the disease with probability
A to their susceptible neighbors and recover with proba-
bility p. Here we consider unweighted networks, for the
sake of simplicity. Weighted networks will be addressed
in the next section in the study of time aggregation of
the evolving network. In the SIRS model, recovered nodes
turn susceptible with probability w. Results of the sim-
ulations are obtained after randomizing the initial seed
and the time step of the T-sequence chosen as the initial
time step, and they are obtained under the assumption of
periodic boundary conditions for network evolution.
Figure 2 shows the typical evolution of an outbreak,
for the three disease models considered (SIS, SIRS, and
SIR) and for all networks. The above-threshold behavior
is marked by a non-zero endemic state for both SIS and
SIRS, whereas a SIR outbreak shows the usual bell-like
trend, reaching always extinction at the end, as expected.
For the SIRS dynamics, following [56] we numerically
identify the epidemic threshold as the value of the trans-
missibility A for which the relative variation of the preva-
lence at equilibrium is maximal, as such variation would go
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to infinity in the thermodynamic limit (N — o0), indicat-
ing a second order phase transition. We therefore measure

the variablity A = \/(i2) — (ir)?/ (ir) [54,56,57), where

i = %Zthl ieq(t) is the prevalence at equilibrium av-
eraged over a period T'. The endemic prevalence is com-
puted using the quasistationary method [56,58]. We force
the system to be in an active state; whenever it reaches
the absorbing state with no infectious nodes, we sample
one random configuration among the ones the system had
visited while it was in the same snapshot, and restart the
simulation from that configuration. After discarding an
initial transient (3 x 102 iterations), we compute ir for
every period (for 5 x 10% iterations), and with those val-
ues we compute (i) and (i3.). We then compare the value
of A corresponding to the peak of the variability A with
the prediction for the epidemic threshold obtained from
the infection propagator approach. The same method is
used for the SIR dynamics, where the endemic prevalence
is replaced by the final attack rate r, i.e. the fraction of
nodes hit by the epidemic. We stress that variability has
formally the same definition in both SIRS and SIR models,
but it is computed using different observables. We are only
interested in the position of the peak [56], as an indication
of the epidemic threshold, and not its global behavior.

4.3 Threshold results

We consider a SIR dynamics on the three networks under
study and explore two values of the infectious period, cor-
responding to p = 0.2,0.5. For each u, Figure 3 shows the
behavior of the variability A normalized to its peak value
Amax as a function of the transmissibility A. In all cases we
find a very good agreement between our prediction (ver-
tical dashed line) and the simulated epidemic threshold
obtained from the peak position of A. The agreement is
found for both network models, ACTIVITY and BURSTY,
despite them being characterized by different topologi-
cal and temporal heterogeneities, and for the empirical
dataset SCHOOL. This last network features a more com-
plex dynamics capturing the daily activities and interac-
tions, with non-trivial temporal correlations and modular
structures evolving in time [55]. Despite the approxima-
tions used to compute the epidemic threshold with the
infection propagator approach, the results of Figure 3 in-
dicate that the method is able to provide reliable and ac-
curate predictions for the threshold behavior of systems
characterized by different properties. We also note that the
agreement is obtained independently of the values of the
epidemic threshold: the threshold of the SCHOOL network
is indeed approximately one order of magnitude smaller
than the ones obtained in the two network models for the
same SIR dynamics.

The choice of the number of nodes (N) and snapshots
(T') in the models considered is arbitrary, but it does not
impact our findings. In reference [30] we already studied
the effect of T on the threshold, and observed that, af-
ter an initial transient, the epidemic threshold saturates
around a stable value, showing that the optimal T has
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Fig. 3. SIR model. Comparison between the epidemic thresh-
old and variability. The variability A of final attack rate r,
normalized to its peak value (A/Amax), is plotted against the
transmissibility A. We explore two different values of p. Dashed
vertical lines represent the threshold value for A predicted by
the infection propagator approach. (a) Shows the results for
the ACTIVITY network, (b) for the BURSTY network, and (c)
for the SCHOOL network.

been reached. Here, in Figure 4, we explore the effect of IV
for the ACTIVITY model, by building different instances of
the model, for several values of N. We find that the median
value of the threshold, computed over the instances, does
not depend on the network size N. Fluctuations around
the median, however, sharply decrease as IN increases, as
expected.

Results similar to those presented in Figure 3 are also
obtained when considering a SIRS dynamics, character-
ized by the same values of the infectious period considered
above and by three values of the probability of immunity
waning (w = 0.25, 0.5, 0.75). For each temporal network,
we numerically identify the value of the epidemic thresh-
old as that corresponding to the peak of the normalized
variability A/Apax, and recover a good agreement with
our analytical predictions, Figure 5. The addition of the
transition from an immune state to a susceptible state
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old of the AcTIVITY model. We build ACTIVITY models for dif-
ferent values of IV, and compute their epidemic threshold for
w1 = 0.2. For each value of N (z-axis) we build 200 instances of
the model, and compute their respective thresholds. On the y-
axis we plot the median, 50% and 95% of the epidemic thresh-
old, computed over the instances.
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Fig. 5. SIRS model. Comparison between the epidemic thresh-
old and variability. The variability A of the endemic prevalence
ir, normalized to its peak value (A/Amax), is plotted against
the transmissibility A\. We explore different values of p and w.
Dashed vertical lines represent the threshold value for A pre-
dicted by the infection propagator approach. (a) Shows the
results for the ACTIVITY network, (b) for the BURSTY network,
and (c) for the SCHOOL network.
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Fig. 6. SIRS model. Comparing the average prevalence above
threshold, for different values of w. For each network we choose
a value of X above threshold, so that variability is around 1/3
of its peak, A/Amax &~ 1/3. This value is clearly arbitrary,
but it allows us to compare the different networks in similar
epidemic situations. For ACTIVITY this corresponds to A = 0.14
for 4 = 0.2, and A = 0.35 for 4 = 0.5; for BURSTY A = 0.36
and A = 0.86, and for sCHOOL A = 0.01 and A = 0.03. We plot
the average prevalence at equilibrium ir for all three networks,
and for all the explored values of p and w.

does not alter the accuracy of the computed predictions.
Moreover, different immunity periods (i.e. different values
of w) lead to the same epidemic threshold on the tem-
poral networks, as predicted by the infection propagator
approach. The difference observed in the curves for differ-
ent values of w for A well above the threshold is induced
by the variation in the average endemic prevalence. Epi-
demics circulating on these systems and characterized by
longer immunity periods (w = 0.25, light blue and light
red in the plots of Fig. 5) display a larger variability due to
the smaller average prevalence reached at equilibrium, as
shown by Figure 6. Shorter immunity periods (w = 0.75)
reach a larger endemic prevalence for a given value of the
transmissibility above the epidemic threshold and there-
fore display a smaller variability A/Apax.

5 Impact of time aggregation of the temporal
network

In many cases, information on network dynamics can be
coarse, with data reporting on the temporal evolution at
a lower resolution scale than the one of the process it-
self. This means that all events occurring within the time
interval of the considered resolution will be aggregated
in a static single snapshot. An aggregated representation
of a temporal network does not account for causal struc-
tures and temporal correlations that occur at time scales
that are smaller than aggregation interval [59]. Since these
structures can impact disease dynamics, it is crucial to
assess how such coarser representation influences the de-
scription of epidemic processes [37,59,60]. Here, we study
the influence of the aggregation schemes described in ref-
erence [60] on the epidemic threshold. HET scheme is a
weighted aggregation of the snapshots, obtained by sum-
ming link weights: Wy, Wy — W, + Wy ;. HOM is
topologically equivalent to HET, having the exact same
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set of links. Each link is given an equal weight correspond-
ing to the average link weight of the weight distribution
of the HET network aggregated over the same period. As
a result, both schemes share the same average weight at
every aggregation interval, but HET accounts for weight
heterogeneity. We use the intrinsic transmissibility A for
comparison across different aggregation schemes and in-
tervals, as it does not depend on weight. We consider the
empirical dataset of the SCHOOL network as it provides
a richer temporal and topological set of features with re-
spect to synthetic models. Also, the study on aggregation
aims at providing useful practical information for data
collection purposes.

We consider the highest resolution network obtained
from the SCHOOL data corresponding to At; = 20 s. Start-
ing from this resolution, we aggregate snapshots recur-
sively two by two, doubling the aggregation interval at
each aggregation test. We consider the recovery rate m
as an intrinsic property of the disease, thus not chang-
ing with aggregation. The probability of recovery after a
time At is me~"4t. Aggregation interval at the kth ag-
gregation is Aty = kAt;. Hence, we compute the recovery
probability at the kth aggregation pu[Atg] as the probabil-
ity of recovering within an interval Aty, i.e., u[At;] =
1 — e ™Atk We explore four different recovery rates,
m = 1.8,9,18,90 h~!, in order to explore different time
scales of disease diffusion. High recovery rates mean short
average infectious periods, and thus fast disease progres-
sion at node level. Conversely, low recovery rates induce
long infectious periods, resulting in slower microscopical
disease dynamics.

Threshold results on aggregated networks

We compare the epidemic threshold Aa; computed after
aggregating the network with a given aggregation time
window At, to the one computed at the highest resolution
Aty (A1), using the ratio Aas /Ay (Fig. 7). For each recov-
ery rate, the results from two time aggregation schemes
are shown.

Focusing on the HET aggregation scheme, the results
of Figure 7a show that the prediction made on the aggre-
gated SCHOOL network deteriorates with the increase of
the time aggregation window At. As expected, the aggre-
gation induces a loss of the temporal information making
the aggregated network to perform poorly with respect to
reproducing the behavior obtained in the original network.
This is known for a series of indicators regarding the im-
portance of individual nodes in the spread of an epidemic
in the system [59], and we find that it also results in a
biased estimation of the threshold condition for the epi-
demic propagation. The effect is more rapid and stronger
for the fast disease (e.g. m = 90 h™!), in that it would
have the possibility to experience the entire landscape of
dynamical changes the network undergoes through, thus
differentiating between the pattern obtained at the high-
est resolution and the aggregated one. On the other hand,
for the slow disease (e.g. m = 1.8 h™!) we expect the epi-
demic process to be less sensitive to the network changes.
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Fig. 7. Impact of aggregation on the epidemic threshold for the
SCHOOL network and three reference models. The ratio between
the threshold Aa: computed on the aggregated network and
the threshold A\; of the highest resolution temporal network
is plotted as a function of the aggregation time interval At.
Four different values of the recovery rate are explored, along
with two aggregation schemes, HOM and HET. (a) Shows the
results for scHooL, (b) for reference model RESHUFFLE, (c)
for RECONFIGURE, and (d) for ANONYMIZE. Black vertical solid
lines mark aggregation intervals of 1 min, 1 h and 6 h. Black
vertical dashed line corresponds to 3 min 20 s.

The epidemic threshold computed on the aggregated net-
work provides indeed a good estimate of the one corre-
sponding to the highest resolution network up to a cer-
tain level of aggregation (e.g., At ~ 3 min 20 s for the
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m = 1.8 h™! case), after which the accuracy is progres-
sively lost. This is consistent with the numerical results
of an SEIR (susceptible-exposed-infected-recovered) dy-
namics spreading on the network of contacts of confer-
ence attendees, showing that the spreading dynamics is
well described by a static aggregated network if the het-
erogeneity of contact durations is taken into account as
edge weights [60].

The underlying mechanism leading to the deteriora-
tion of the epidemic threshold estimate with increasing
aggregation time window is the creation of novel trans-
mission paths that would otherwise not exist, with the
effect of destroying the causality of the sequence of in-
teractions within At and of increasing the density of the
links in the network [61,62]. All these effects tend to facili-
tate the spread of a disease, so that the resulting epidemic
threshold is lower than the one computed on the original
temporal network corresponding to At = At; = 20 s, as
shown in Figure 7a.

If we focus on the HOM aggregation scheme, we ob-
serve that the epidemic threshold predicted for a given
At is systematically higher than the one obtained in the
HET scheme for the same At value (same color, dashed
lines vs. continuous lines in Fig. 7a). The reason lies in
the way weights are distributed over the links of the ag-
gregated networks. While the HET scheme preserves the
heterogeneity of the duration of the contacts, cumulating
the duration of the interaction established by each pair of
individuals, this information is lost in the HOM scheme as
the total contact duration is homogeneously distributed
among all contacts. Heterogeneity of the weights has a
strong effect on the evolution of epidemics [45,63-71] and
in many cases it has the effect of favoring the spread of dis-
eases [21,72-74]. This results in a lower epidemic thresh-
old than its homogeneous counterpart, for a given At. The
faster the disease is, the smaller is the difference observed
in the epidemic threshold obtained from the two aggrega-
tion schemes.

To better explore the various facets of the SCHOOL
temporal network having an impact on the threshold
condition, we also consider three reference models that
systematically destroy some of the network properties.
RESHUFFLE consists of a random reshuffling of snapshot
time ordering. It preserves the aggregated network, and
the static topological features of the snapshots. It breaks
the temporal activity of the network, defined as the num-
ber of contacts in time. It breaks all temporal correla-
tions among link activations, too. RECONFIGURE consists
of a random reassignment of contact timestamps. Two
contacts (1, j,t), (k,l,s) are randomly selected, and their
timestamp switched: (4,7,s), (k,1,t). It is equivalent to
the DCW null model introduced in reference [18]. RE-
CONFIGURE preserves the activity timeline and the aggre-
gated network. It breaks snapshot topology and temporal
correlations between link activations. Finally, ANONYMIZE
reshuffles the identity of the nodes of each time snapshot,
thus preserving activity timeline and static topology of
each snapshot. It breaks all dynamic community struc-
tures and cliques (namely school classes).
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Results for these reference models are shown in Fig-
ures 7Tb—7d. The behaviors obtained for RESHUFFLE and
RECONFIGURE models are very similar. The difference be-
tween HET and HOM schemes is reduced for all recovery
rates with respect to the results obtained on the orig-
inal network, and it becomes negligible for faster dis-
eases. The curves of Figures 7b and 7c show that the
obtained result is independent of the activity timeline of
the network (preserved by the RECONFIGURE reference
model, but not by the RESHUFFLE one), and it is more
likely related to specific time-evolving topological struc-
tures present in the SCHOOL network that are otherwise
destroyed by both reference models. To test this hypothe-
sis, we consider the ANONYMIZE reference model (Fig. 7d),
where we destroy all two-points correlations and their time
correlations, while preserving the overall temporal activ-
ity and the topology of each snapshot. As expected, the
two schemes cannot be anymore distinguished following
such reshuffling.

Results of Figure 7 show that in all reference mod-
els aggregation leads to an underestimation of the epi-
demic threshold, for both aggregation schemes considered.
In the SCHOOL network, on the other hand, HOM aggrega-
tion is found to provide larger epidemic thresholds than
the one obtained at the highest resolution, within a given
aggregation interval and for slow diseases. To better un-
derstand this behavior observed solely on the empirical
data that disappears with the three types of reshuffling
considered in the reference models, we explore the role of
time correlations and memory effects in the SCHOOL net-
work. We consider the social strategy introduced in [75].
More in detail, we fix a time window of § = 20 snap-
shots (6 min 40 s), and define kfinM as the degree of
node 7 in the network aggregated over the interval [t—4, t].
The degree assumes the same value in both networks as
it is the number of incident connections. We also define
s,{ﬂET as the weighted degree of node i in HET network,
i.e., the sum of the weights of its incident links [11]. We
compute the social strategy of node ¢ at time step ¢ as
Yei = kEOM /sfIET (the same definition as in Ref. [75],
except for a normalizing factor 0). Social strategy discrim-
inates between memory-driven behavior (y — 0), where a
node tends to make contacts always with the same nodes,
and memoryless behavior (v — 1), where a node shows a
more socially exploratory behavior. Figure 8a shows how
social strategy evolves in time. We observe that its median
behavior is quite stable in time around low values, except
for several localized spikes. Most of these spikes roughly
correspond to abrupt variations in the temporal activity
of the network. These spikes result then from a reduction
of the memory of the system, due to a varying number
of overall contacts. Remarkably, however, the median so-
cial strategy returns to the value it had before the spike
quickly after each of these events, indicating that the in-
teraction dynamics does not qualitatively change, but the
sets of interacting individuals do change over time. The
only exception occurs between around 13 : 30 and 14 : 30,
when social strategy is significantly higher than average,
but still lower than its delimiting peaks. These spikes
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Fig. 8. Interplay between SCHOOL dynamics and aggregation.
In (a) we show the temporal activity of SCHOOL, as the nor-
malized number of contacts (black line) in each snapshot of the
fully temporal network. On the z-axis we indicate the time of
the day, in hours. Red solid line represents the median value
of network’s social strategy, computed with a sliding window
of 20 snapshots (equivalent to 400 s). Social strategy plotted
at time ¢ is computed over the interval (¢ — 20, ¢]. Red areas
show 50% (darker) and 95% (lighter) confidence interval for
social strategy. In (b) we plot, for reference model RESHUFFLE-
SOCIAL, the ratio between the threshold computed on the ag-
gregated network Aa:, and the threshold of the full temporal
network A1, as a function of the aggregation time interval At.
Four different values of the recovery rate are explored, along
with the two aggregation schemes HOM and HET. Black vertical
solid lines mark aggregation intervals of 1 min, 1 h and 6 h.
Black vertical dashed line corresponds to 3 min 20 s.

naturally induce a temporal slicing of the network, in a
way that likely corresponds to the rhythm of school ac-
tivities. We call v-slice each time interval between two
consecutive spikes.

The degree of memory contained in the system, and
measured through the tendency of each node to keep es-
tablishing contacts with the same individuals over time, is
destroyed in all reference models under study, even those
that preserve the activity timeline of Figure 8a. To un-
derstand whether if and to what extent stages in the
time evolution of the social strategy are responsible for
the behavior observed in the SCHOOL network, we design
a fourth reference model, RESHUFFLE-SOCIAL, where we
randomize the snapshot order, as in RESHUFFLE, but we
allow reshuffling only within each v-slice. Figure 8b shows
that RESHUFFLE-SOCIAL displays the same behavior as the
SCHOOL network, unlike RESHUFFLE, with an overestima-
tion of the value of the epidemic threshold by the HOM
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scheme for small enough aggregation intervals and slow
diseases. The aggregation of snapshots where individuals
show a rather large memory in the way they establish
links (i.e. small ) leads to marked weight-topology cor-
relations, likely being part of robust temporal communi-
ties of highly interacting nodes emerging from school daily
activities. Such correlations were already found to play
an important role in the slowing down of epidemics once
large-scale propagation occurs in the system [18]. In our
case, we find that preserving the heterogeneity of weights
of such correlations (as in the HET scheme) can provide a
good approximation of the epidemic threshold for small
interval aggregation and for slow diseases. In addition,
such approximation is better than the one provided by
homogenizing weights across all links in the system (as in
the HOM scheme), given that the latter destroys weight-
topology correlations leading to a network that is more
resilient to the epidemic spread [21]. This effect vanishes
for increasing time aggregating windows and it completely
disappears for all aggregating intervals once these corre-
lations are destroyed by the reshuffling of nodes (see the
ANONYMIZE reference model in Fig. 7).

6 Conclusions

We have considered the infection propagator approach to
compute the epidemic threshold for an arbitrary time-
varying network. Starting from a SIS dynamics on a
weighted directed temporal network, we have considered
more complicated compartmental models and addressed
timescale issues relevant for the study of temporal net-
works. The overall aim was to introduce the infection
propagator approach for more realistic infection dynamics
and to study the effect of time aggregation of the network
of contacts on the computation of its threshold. Our find-
ings indicate that the approach provides reliable and accu-
rate predictions of the epidemic threshold also in presence
of immunity stages and loss of immunity transitions in
the disease natural history. In addition, for slow diseases,
the time aggregation scheme preserving the cumulative
heterogeneous duration of contacts between two nodes is
shown to provide a quite accurate estimation of the epi-
demic threshold of the corresponding high-resolution net-
work up to a certain aggregation level. For faster diseases,
time aggregation strongly alters the accuracy of the es-
timation. The presence of weight-topology correlations is
the main feature of the SCHOOL network leading to biased
estimations. These findings provide important information
to study the vulnerability of systems in real settings and
to assess possible biases induced by the consideration of
time-aggregated contact data.
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12-MONU-0018 (HARMSFLU) to V.C.; the EC-ANIHWA
contract no. ANR-13-ANWA-0007-03 (LIVEepi) to E.V., C.P.,
V.C.; the “Pierre Louis” School of Public Health of UPMC,
Paris, France to E.V.
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