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Publique, F-75013 Paris, France

emails: eugenio.valdano@gmail.com, polettoc@gmail.com, vittoria.colizza@inserm.fr
3ISI Foundation, Torino 10126, Italy

(Received 4 March 2016; revised 20 May 2016; accepted 2 June 2016; first published online 4 July 2016)

The ability to directly record human face-to-face interactions increasingly enables the develop-

ment of detailed data-driven models for the spread of directly transmitted infectious diseases

at the scale of individuals. Complete coverage of the contacts occurring in a population is

however generally unattainable, due for instance to limited participation rates or experimental

constraints in spatial coverage. Here, we study the impact of spatially constrained sampling

on our ability to estimate the epidemic risk in a population using such detailed data-driven

models. The epidemic risk is quantified by the epidemic threshold of the SIRS model for

the propagation of communicable diseases, i.e. the critical value of disease transmissibility

above which the disease turns endemic. We verify for both synthetic and empirical data of

human interactions that the use of incomplete data sets due to spatial sampling leads to the

underestimation of the epidemic risk. The bias is however smaller than the one obtained by

uniformly sampling the same fraction of contacts: it depends non-linearly on the fraction of

contacts that are recorded, and becomes negligible if this fraction is large enough. Moreover,

it depends on the interplay between the timescales of population and spreading dynamics.

Key words: network epidemiology, disease spreading, network sampling

1 Introduction

High-resolution, time-resolved contact data describing face-to-face interactions in closed

environments, such as hospitals, schools, conferences or workplaces provide valuable

information that can inform detailed models of the spread of human airborne infectious

diseases [1–10]. In particular, wearable sensors enable the recording of contacts with a

spatial resolution of 1 to 2 m and a temporal resolution of the order of seconds [2, 4,

5, 10–15]. However, complete coverage of the contacts occurring within a population is

generally unattainable. As a result, the recorded network is usually a sample of the full
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underlying network of contacts, and failure to take this into account may result in a

biased assessment of the vulnerability of the system to a spreading process [16, 17].

Sampling is a well-known and well-studied issue, in particular in the context of static

contact networks, which are often collected by surveys or diaries. Various sampling pro-

cedures such as population sampling, snowball sampling, or respondent-driven sampling,

affect static networks’ measured properties in different ways, and many works have

studied how network characteristics such as the average degree, the degree distribution,

clustering or assortativity depend on the specific sampling procedure and on the sample

size [18–26]. Other works have tackled the issue of inferring network statistics from in-

complete data [27–30]. Fewer studies have investigated how the outcome of simulations

of dynamical processes in data-driven models is affected if incomplete data are used, and

few methods exist to obtain reliable estimates of the outcome of such processes when only

sampled data are available [16, 17, 31].

In the case of temporally resolved contact networks recorded using wearable sensors,

two different sampling effects are potentially present, leading to very different types of

data loss. First, limited rates of participation in the data collection campaign, with a

fraction of the population declining to wear sensors, lead to population sampling, with

the consequence that all contacts of non-participating individuals are absent from the data.

The use of such incomplete data in models of epidemic spread leads to an underestimation

of the epidemic risk, as the non-participating individuals are equivalent to immunized ones

in simulations: the absence of their contacts from the data removes potential transmission

routes between the participating individuals. Note that contacts with individuals that do

not belong to the population under study are also by definition absent from the data,

but that this limitation may be less crucial if the population under scrutiny forms a

coherent group. Second, constraints stemming from the measuring infrastructure itself

can represent another source of data incompleteness: if contacts detected by the sensors

need to be uploaded in real time to radio receivers, the information corresponding to

contacts taking place outside the range of these receivers is lost [4].

Both types of sampling may affect data collection at the same time. As population

sampling has been studied in Génois et al. [17], we focus here instead on the latter issue,

which causes spatially constrained sampling. Such sampling leads to the absence of some

of the contacts between participating individuals from the data set, namely those taking

place outside of the monitored areas. This sampling depends on the specific positions of

the radio receivers and on how individuals move in and out of the monitored locations.

The number of contacts each individual makes is thus underestimated in the data. Such

sampling is therefore also expected to lead to an underestimation of the epidemic risk, in a

way that depends on the interplay between population dynamics and spreading dynamics.

To assess the impact of spatially constrained sampling on simulated spreading processes,

we first consider an agent-based model of human interactions that reproduces the phe-

nomenology of empirical contact patterns observed in closed environments. We moreover

assume that the agents can move between two locations, similarly to individuals moving

from one room to another. To mimic sampling, we consider the data obtained from the

monitored location only, and compare it to the full data set of contacts taking place

in the agents’ population. We compute in both cases the epidemic risk as quantified by

the epidemic threshold of the Susceptible-Infectious-Recovered-Susceptible (SIRS) model
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of infectious disease spread, of which the paradigmatic Susceptible-Infectious-Susceptible

(SIS) and Susceptible-Infectious-Recovered (SIR) models are special cases. The epidemic

threshold represents the critical value of disease transmissibility above which the simulated

pathogen is able to reach a large fraction of the population. By comparing the values

obtained for the partial and the full data sets, we analyze the error made on the assessment

of the system’s epidemic risk when incomplete data is used. To validate the results found

for synthetic populations, we next consider empirical face-to-face contact data collected

at a scientific conference [5] and perform resampling experiments by selecting subsets of

the full data composed of the interactions taking place only in specific locations.

Our results show that the impact of spatially constrained sampling on the evaluation

of the epidemic risk is qualitatively similar in empirical and synthetic data. First, the

error on the epidemic threshold is much smaller than the one obtained from random

sampling of the contacts. Second, when the fraction of recorded contacts increases, the

error decreases faster than linearly, until practically no error is made above a certain

fraction. We also observe some discrepancies between the results obtained in real and

synthetic contact networks and relate them to the fact that individuals behave differently

in different locations, an ingredient not present in the model used to create the synthetic

population and the contacts among its members.

The present paper is organized as follows. In Section 2, we recall the definition of

the SIRS model of epidemic spreading, and we detail the computation of the epidemic

threshold, which is used to quantify the epidemic risk for a population. In Section 3, we

describe the model of human interactions that is used to generate synthetic data sets. In

Section 4, we investigate the effect of spatial sampling on the estimate of the epidemic

risk in a synthetic population built with this model. In Section 5, we consider an empirical

network of face-to-face contacts, on which we perform spatially constrained resampling

experiments, and compare the results with the ones obtained for synthetic data.

2 Quantifying the spreading potential in a population—the epidemic threshold

Let us consider a time-varying contact network [33] representing the temporally ordered

sequence of contacts between individuals in a population: individuals are represented by

the nodes of the network, and at each point in time a link between two nodes indicates

that the corresponding individuals are in contact. In order to evaluate the vulnerability

of the population to a disease that can spread through these contacts, we consider the

dynamics of the SIS and SIRS models on the contact network. According to these

models, an individual (agent) in the Susceptible (S) state, in contact with an agent in the

Infectious (I) state, becomes infectious at rate λ. Infectious agents recover spontaneously

at rate μ, either going back to the Susceptible state (SIS model), or entering the Recovered

state (SIRS model) where they are immunized to further infections. In the SIRS model,

the waning of immunity against the infection is modeled by letting recovered agents

spontaneously enter the Susceptible state again at rate ω. At fixed rates of recovery μ

and of loss of immunity ω, the epidemic threshold λc is defined as the critical value of λ

that separates a regime where the epidemic rapidly goes extinct (λ < λc) from a regime

where the disease becomes endemic (λ > λc) [Figure 1(a)] [34]. The epidemic threshold

can be found analytically for an arbitrary temporal network under an individual-based
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(a)
temporal multilayer

(b)

(c)

r1→2(τi)

r2→1(τi)

1: monitored location 2: non-monitored location

i ij j

τi τj
τ(i,j) τ(i,j)

f�(τ(i,j))

fa(τi)Πa(τj)Π�(τ(i,j))

Contact No contact

(d)

Figure 1. Illustration of the problem considered. (a) We quantify the epidemic risk for a population

by the epidemic threshold of the SIRS model, separating in the phase diagram a region in which

the epidemic goes rapidly extinct from a region in which a finite fraction of the population is

affected. (b) Schematic representation of the multilayer mapping of a temporal network comprising

3 nodes and 2 time steps. The network on the left is mapped onto a 2-layer structure, with each

layer containing a copy of all the nodes. Nodes are connected through directed links to their future

images (black dashed) and to the future images of their present neighbors (red dashed). (c) To

model the dynamics of spatially constrained sampling, we consider a population evolving in two

separated locations; the full data set consists of all contacts taking place in both locations, while the

sampled data set considers only the contacts taking place in the “monitored” location. Each agent i

moves between locations with rates rp→q that depend on the time τi elapsed since she was last active,

and can only have contacts with other agents present in the same location. (d) Rules governing

interactions between agents within each location [32]: the rate at which a contact between a pair

of agents (i, j) ends is controlled by the memory kernel f� and depends on the time elapsed since

the contact was created; the rate at which i creates a contact with j is controlled by the memory

kernels fa, Πa and Π�, which depend on the times elapsed since i and j either lost or gained a

contact (respectively τi and τj) and on the time τ(i,j) elapsed since i and j were last in contact.
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mean field approximation using the infection propagator approach introduced in Valdano

et al. [35, 36]. This method first introduces a mapping of the temporal network on a

multi-layer network associating the network’s time frames to distinct layers. Within the

framework considered here, the epidemic threshold is the same for the SIS and SIRS

models, as well as for the SIR model (permanent immunity), which can be recovered as a

special case of the SIRS model for ω = 0 [36]. For simplicity, we describe below the case

of the SIS process and refer to [36] for the case of the full SIRS model.

Assuming a generic temporal network of N nodes evolving in discrete time, its evolution

can be represented as a sequence of adjacency matrices {At}, where t = 1, . . . T . At,ij = 0, 1

records the contact between nodes i and j at time step t. The SIS diffusion process on such

network is shown to be equivalent to a new dynamic process unfolding on a particular

multi-layer representation of the time evolution, described in Figure 1(b). By means of the

supra-adjacency matrix formalism [37–39] this new process can be formalized in terms of

the following NT × NT block matrix, encoding both topology and spreading dynamics:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 − μ + λA1 0 · · · 0

0 0 1 − μ + λA2 · · · 0

...
...

... · · ·
...

0 0 0 · · · 1 − μ + λAT−1

1 − μ + λAT 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The resulting process consists in a diffusion on a static, albeit multilayer, network, for

which λc is known to be obey the relation ρ[M(λc, μ)] = 1 [40,41], where ρ is the spectral

radius of the matrix, i.e., the largest among the absolute values of the eigenvalues of

the matrix. The computation can be further simplified by showing that this condition

is equivalent to setting the spectral radius of another matrix equal to one, with the

advantage that the latter is of size N × N, thus not scaling with T . This matrix is the

infection propagator:

P =

T∏
t=1

(1 − μ + λAt) . (2.1)

P encodes both network and disease dynamics, and its spectral properties fully characterize

the epidemic threshold: ρ[P(λc, μ)] = 1.

Given a data set represented by a temporal network of contacts, we will denote by

λ
(full)
c the threshold computed using the full temporal network. We will also consider

subsets of contacts taking place in a specific location and subsets of contacts sampled

uniformly at random. The resulting thresholds will be denoted by λ
(monitored)
c and λ

(random)
c ,

respectively, and the impact of sampling will be measured by the ratios λ
(full)
c /λ

(monitored)
c

and λ
(full)
c /λ

(random)
c .

3 Agent-based model of interaction dynamics

In order to mimic spatial sampling, we consider a population of N agents who move

between two separate locations, and can only interact with other agents present in the
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same location: spatial sampling can indeed be simulated in a straightforward manner by

considering that one of the locations is monitored, and the other is not, i.e., by excluding

the contacts taking place in one of the locations from the data set [Figure 1(c)]. The rates

of movements between the locations determine the fraction of sampled contacts.

We denote by Nq(t) the number of agents in location q(= 1, 2) at time t, where

N1(t) + N2(t) = N. The N(N − 1)/2 pairs (i, j) of agents are all potential links. If i and j

are in contact the link (i, j) is active, while (i, j) is inactive when i and j are not in contact.

At each time t, only the N1(t)(N1(t) − 1)/2+N2(t)(N2(t) − 1)/2 pairs of agents sharing the

same location can have an active link. Each agent i is characterized by the time τi = t− ti
elapsed since the last time ti she changed state, i.e., the last time that she either gained

or lost a contact or moved to a different location. Links are characterized by their age,

defined as the time τ(i,j) = t− t(i,j) elapsed since the link was either activated or inactivated

[Figure 1(d)] [32].

We initialize the network with the agents randomly distributed in the different locations

and all agents isolated (all links inactive). We set ti = 0 for all agents and t(i,j) = 0 for all

links. The network evolves through the repetition of two sequential steps governing the

agents’ movements and contacts. More precisely, at each time step Δt,

(1) the locations of all agents are updated [Figure 1(c)]: Each isolated agent i present in

location p moves to location q with probability Δt rp→q(τi);

(2) the contacts are updated [Figure 1(d)]:

(i) Each active link (i, j) is inactivated (the contact between i and j stops) with probability

Δt f�(τ(i,j)).

(ii) Each agent i initiates a contact with another agent with probability Δt fa(τi). The

other agent j is chosen among agents that are in the same location as i and not in

contact with i, with probability Πa(τj)Π�(τ(i,j)).

These dynamical rules (only isolated agents can change location, and contacts can be

initiated only between agents in the same location) ensure that a link can be active only

when the corresponding agents share the same location. We note that the model can easily

be generalized to an arbitrary number of locations. As such, it is akin to metapopulation

models composed by spatially referenced patches or subpopulations that are coupled

together [42–46]. These models generally assume homogeneous mixing within patches

where the infection dynamics takes place (or mixing between population groups [47]) and

either an effective coupling between patches or explicit migration/mobility processes. While

non-Markovian rules have been introduced in migration processes in metapopulation

models for the study of disease spread and epidemic threshold conditions [48–51], explicit

contact structure between individuals in a patch have been rarely considered [52], assuming

static topologies. Our approach thus differs from usual metapopulation models in that it

provides explicit temporally evolving contact structures within each group, allowing for

different dynamics of mobility and contacts.

The model’s dynamics depends on the functional forms of the memory kernels r1→2,

r2→1, f�, fa, Π�, and Πa. The kernel functions f�, fa, Π� and Πa measured from empirical

contact networks exhibit power-law like forms with exponents close to minus one [32],
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(a) (b)

Figure 2. Statistics of the movements of attendees at a scientific conference [5]. (a) Distribution of

the times Δti individuals spent in a location that was monitored (visible) before leaving the visible

area. (b) Rates r→ at which individuals left the monitored area as function of the time elapsed since

they last either created a contact, broke a contact, or arrived in the area, τi.

indicating long term memory in the interactions. Moreover, the movements in and out

of monitored locations show similar long term memory (Figure 2), i.e., the rates rp→q

follow a similar power-law like shape with exponent approximately equal to minus

one. We therefore set rp→q(τ) = ap→q(1 + τ)−1, f�(τ) = z(1 + τ)−1, fa(τ) = b(1 + τ)−1,

Π�(τ) ∝ (1 + τ)−1, and Πa(τ) ∝ (1 + τ)−1. Here, Πa and Π� are normalized such that∑
j∈q,j�Vi,j�i Π�(τ(i,j))Πa(τj) = 1, where the sum runs over all nodes j � i in the same

location q as i but not in contact with i (Vi denotes the set of nodes in contact with i).

4 Effect of dynamic sampling on the epidemic threshold

As discussed above, the model emulates the sampling of empirical data caused by individu-

als moving in and out of monitored locations [Figure 1(c)]. The parameters N, b, and z are

tuned such that the number of agents and the rates of creation and deletion of contacts

are comparable to those observed in empirical networks of face-to-face contacts [32]. The

parameters a1→2 and a2→1 control the fraction of the total number contacts that occur in

each location (Table 1). The total contact network is composed by the contacts occurring

in both locations, while spatial sampling is simulated by considering that only one of the

locations is monitored: the resulting sampled contact network is formed by the contacts

taking place in the corresponding location only. We calculate the epidemic threshold λ
(full)
c

for the total contact network and λ
(monitored)
c for the sampled one. The discrepancy between

the two is quantified by the ratio λ
(full)
c /λ

(monitored)
c , which is expected to be smaller than

one as the sampled network underestimates the amount of contacts taking place in the

population, in turn leading to an underestimation of the epidemic risk.

Note that we could in principle consider more than one monitored or non-monitored

location, at the cost of additional parameters ap→q . However, the important feature of

the model for the problem at hand is its division into a (spatially separated) monitored

part and non-monitored part. An additional division of the monitored or non-monitored

part into multiple subpopulations would only lead to a more complicated (if possibly

more realistic) model of interaction dynamics in each part. We have considered the case

of three locations (one monitored and two non-monitored), finding qualitatively similar
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Table 1. Parameters and summary statistics of the synthetic data sets. f: fraction of con-

tacts that are recorded in the monitored location; a1→2, and a2→1: model parameters fixing

the rates of movement between locations; N∗: number of nodes that participate in at least

one contact; N∗
1: number of nodes that participate in at least one recorded contact; W :

cumulative duration of all recorded contacts; Nc: total number of contacts recorded; M1→2

and M2→1: total number of movements from location 1 to 2 and 2 to 1, respectively. The

total number of nodes in the networks is N = 450 and z = 1.44 in all cases. For f = 12%

and f = 88%, b = 0.55; for f = 20% and f = 80%, b = 0.53; for f = 39% and f = 61%,

b = 0.49

f a1→2 a2→1 N∗ N∗
1 W Nc M1→2 M2→1

12% 2 0.15 384 364 10,887 4,924 7,240 7,248

20% 1.3 0.25 394 383 22,918 10,914 15,072 15,097

39% 0.5 0.3 406 400 47,375 22,864 16,740 16,805

61% 0.3 0.5 406 404 74,864 34,167 16,805 16,740

80% 0.25 1.3 394 393 91,631 40,475 15,097 15,072

88% 0.15 2 384 384 79,247 34,013 7,248 7,240

results to the case of two locations (not shown). As we want to mimic empirical cases of

few hundreds individuals in closed environments, we do not consider the case of a large

number of subpopulations as usually considered in metapopulation models of disease

spread at the regional or global level.

Due to the heterogenous nature of the network dynamics, the thresholds λ
(full)
c and

λ
(monitored)
c increase sub-linearly with μ [Figure 3(a)]. This is explained by the presence

of temporal correlations leading to repetition of contacts in local groups of connected

individuals (temporal cliques), which facilitate the persistence of the disease, thus decreasing

λc [53]. This decrease is larger for larger μ (faster timescales) as the spread on long

timescales is less sensitive to temporal patterns [5]. This effect is also slightly stronger for

the sampled networks than for the full network due to temporal cliques naturally being

localized in a single location, and not spanning the two.

Figure 3 summarizes our main results. First, we note that the estimate λ
(monitored)
c

obtained from spatially constrained sampling of the contacts (due to the monitoring of

only one of the two locations) is much closer to the true threshold λ
(full)
c than what

we would obtain if contacts were simply sampled at random [Figure 3(b)]: for random

sampling of a fraction f of the contacts, we would indeed find λ
(full)
c /λ

(random)
c = f (thin

black line). Moreover, λ(monitored)
c is closest to λ

(full)
c for high values of μ, corresponding

to fast spreading. We can understand this effect as due to the interplay of the timescale

of the spreading process, set by 1/μ, with the timescales of the nodes’ movements and

contacts. For fast processes, fewer individuals change location over the relevant time-scale

1/μ. As a result, most links are either completely recorded or not present at all in the

sampled data [Figure 3(c), left panel]. Moreover, as shown in Figure 3(d), nodes with a

high strength (the hubs), which have a crucial effect on the epidemic threshold [54], tend

to have all of their contacts in a single location on such short time-scales, in contrast

with the case of random sampling of an equivalent amount of contacts. Hence, the

heterogeneous character of weights and strengths is better conserved than for random
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Figure 3. Effect of spatially constrained sampling on the epidemic threshold for synthetic networks.

(a) Epidemic thresholds as a function of μ, calculated on model networks where location 1 (39%

of the contacts), location 2 (61% of the contacts), or both locations (100% of the contacts) are

monitored. (b) Ratio λ(full)
c /λ(monitored)

c between the epidemic threshold calculated on the complete

contact network (100%) and on the monitored part of the contact network, as a function of the

fraction f of the number of contacts that take place in the monitored location. The thin black line

corresponds to the random sampling of contacts, λ(full)
c /λ(random)

c = f. (c) Examples of the contact

network aggregated over 10Δt, 100Δt, or 1, 000Δt. Nodes in the network are divided into three

groups: nodes for which all contacts are recorded in the sampled network (blue), nodes for which

part of their contacts are recorded (magenta), and nodes for which no contacts are recorded (red).

Numbers give the number of links for which all (blue), part of (magenta), or no (red) contacts are

recorded in the sampled data. (d) Fraction fs of contacts that are recorded over the given time-scale

as above for nodes that have at least one contact in the monitored location, versus strength of the

node in the complete network (the strength of a node is given by the sum of the durations of its

contacts). Top plots correspond to a spatial sampling while bottom plots correspond to random

sampling of contacts; colors correspond to the groups of (c). (c), (d) show the case where 39% of

the contacts are recorded. Simulations of network dynamics were performed for 1, 000Δt before

recording contacts in order to ensure that the system had reached a quasi-stationary state.
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10-1

μΔt

10-3

Figure 4. Effect on the epidemic threshold of dynamic sampling of model with Poissonian move-

ment dynamics. Ratio λ(full)
c /λ(monitored)

c between the epidemic thresholds calculated on the complete

contact network and on the monitored part of the contact network, as a function of the fraction f

of the number of contacts that take place in the monitored location. The thin black line marks the

result for random sampling of contacts, λ(full)
c /λ(random)

c = f. Parameters are chosen such that sum-

mary statistics are similar to those of the model with scale-free movements (Table 1). Simulations of

network dynamics were performed for 1, 000Δt before recording contacts to ensure that the system

had reached a quasi-stationary state.

sampling. On long timescales on the other hand, most links are recorded partially [see

right panel of Figure 3(c)] and for most nodes, even hubs, only part of their contacts

are monitored [Figure 3(d), right panel]: this makes the resulting networks more similar

to the random case. Note however, that even for long time-scales, the distribution of

the measured fraction of nodes’ contacts remains heterogeneous and differs significantly

from the distribution in the case of random sampling of contacts, where the distribution

is localized around the fraction f of sampled contacts [Figure 3(d), right panel]. As a

result, λ(monitored)
c remains a markedly better estimate of λ(full)

c than λ
(random)
c , even for slow

infection dynamics. This is due to the scale free nature of the movement dynamics, which

implies that time-scales larger than 1/μ are always represented in the dynamics. If instead,

we consider a model where individuals move between locations according to a Poisson

process with constant rates r1→2(τ) = a1→2 and r2→1(τ) = a2→1, we find that λ
(monitored)
c

approaches λ
(random)
c for small μ, as shown in Figure 4.

5 Empirical data

To validate the results found for model networks, we consider an empirical temporal

network of face-to-face contacts measured at a scientific conference by the SocioPatterns

collaboration (www.sociopatterns.org). As described in Stehlé et al. [5], participants in

the two-day conference were asked to wear Radio Frequency IDentification (RFID) tags

(see [4]) tuned in order to register close face-to-face proximity (1 to 2 m). Such contact

events detected by the tags were immediately sent to a number of receivers installed in the

environment. The conference took place in a large building with several separate areas,

three of which were monitored by 12 radio receivers: 5 receivers were placed in a room

called “Rhodes”, 4 in another room called “Muses” (both rooms were used as exhibition

halls where many contacts occurred), and 3 in the entrance hall of the building (See
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Table 2. Summary statistics for the empirical data. Location: subset number; Receivers:

receivers included in the subset; f: fraction of contacts that are recorded in the monitored

location; b, N∗
1: number of nodes that participate in at least one recorded contact; W :

cumulative duration of all recorded contacts; Nc: total number of contacts recorded; M→1

and M1→: total number of movements to and from the monitored location, respectively

Location Receivers f N∗
1 W Nc M1→ M→1

1 (Room Muses) {101, 108–110} 9% 306 5,209 2,454 3,083 3,085

2 (Hall) {100, 103, 111} 14% 365 8,408 3,912 3,421 3,413

3 {100, 101, 103, 22% 387 13,609 6,352 6,763 6,759

108–111}
4 107 44% 380 26,781 10,846 10,864 10,861

5 (Room Rhodes) {102, 104–107} 79% 393 48,440 17,603 14,276 14,277

6 {100, 102–107 91% 403 55,925 21,834 19,717 19,707

111}
7 {100–106, 93% 403 56,819 21,455 17,578 17,577

108–111}
All {100–111} 100% 403 61,242 23,279 19,616 19,616

Supplementary Material). We resample the data set by dividing it into subsets composed

of the contacts recorded by different groups of receivers (see Table 2), which we refer

to as locations. We then compare the epidemic threshold computed using the full data

set to the ones obtained from each such subset. In order to check the effect of the finite

data set length, we have moreover proceeded as in Valdano et al. [35]: we have computed

λ
(full)
c , λ(monitored)

c and their ratio for increasingly larger values of the period T (see Section

2) up to the entire data-collection time window. We have observed a convergence of all

three quantities for T larger than half of the data temporal length, indicating that the

data-collection period is long enough to characterize the epidemic dynamics.

We note that the situation is not completely analogous to the model described in the

previous sections, which accounts for synthetic dynamics of movements of individuals

between two locations only. Here, individuals move between more than two different

locations (the two monitored rooms, the hall and the locations in the building that

were out of the range of the receivers), their movement and interaction dynamics are

non-stationary, and their interaction behavior, as we will see, differs between different

locations.

Notwithstanding, we observe the same overall behavior obtained for the synthetic data

sets, as shown in Figure 5. First, both λ
(full)
c and λ

(monitored)
c depend non-linearly on μ

[Figure 5(a)]. Second, λ(monitored)
c is a much better estimate of λ(full)

c than λ
(random)
c , and the

error made when using the resampled data becomes negligible for large enough fractions

of observed contacts [Figure 5(b)]. Figure 5(b) also shows an interesting qualitative

difference between the results obtained for the resampled empirical data and the synthetic

data sets: while λ
(full)
c /λ

(monitored)
c always increases with μ for the synthetic data sets (better

estimation for faster processes, as discussed above), this is not always the case for the

empirical data. Consider for example locations 3 and 4, corresponding to f = 22% and

f = 44% [Figure 5(b)]. For location 3, the estimate of the threshold is more accurate for
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(a) (b)

10-1

μΔt

10-3

Figure 5. Effect on the epidemic threshold of spatial resampling of an empirical contact network.

(a) Epidemic thresholds as function of μ, for the different locations corresponding to the fractions

of the total number of contacts listed in the legend. The curves corresponding to f = 91% and

f = 93% are almost superimposed underneath the black one (f = 100%). (b) Ratio λ(full)
c /λ(monitored)

c

between epidemic thresholds calculated on the complete and partial empirical contact networks (full

colored lines). The ratios λ(full)
c /λ(monitored)

c obtained for the synthetic networks (Section 4) are shown

as gray-dashed lines for reference.

faster processes (larger μ), similarly to the results of Figure 3(b). Conversely, for location

4, the estimate is more accurate for slower processes, with λ
(full)
c /λ

(monitored)
c very close to 1

for small enough μ.

We argue that this discrepancy between results obtained with synthetic and empirical

data sets is due to structural differences between real locations. In the model, we impose

the same microscopic dynamics for contact formation and deletion in both locations, while

this may not be the case in the empirical data set; individuals may behave differently in

different locations, leading to different contact patterns.

Figures 6(a)–(b) confirms this picture by investigating the contribution to the strength

of each node of the contacts taking place in locations 3 and 4, as a function of the

node’s strength rank in the full data set. The comparison of the empirical case with the

result of a random sampling of contacts shows that the hubs (nodes with the highest

strength) are significantly over-represented with respect to the random case in location

4, while they are under-represented in location 3. For slow spreading diseases, using the

weighted aggregated network in simulations yields a good approximation of the outcome

of processes on the complete temporal network [5, 36]. Therefore, when using the data

collected in location 4, we obtain a particularly accurate estimate of the threshold for

slow processes because the hubs of the full network have most of their activity precisely

in this location.

Figures 6(c)–(d) moreover shows that, in the case of the synthetic data sets, no systematic

under- or over-representation of the hubs of the full network is observed in the monitored

location, as expected since locations 1 and 2 are equivalent in terms of contact dynamics

in the model.

6 Conclusions

In this paper, we have investigated, using synthetic and empirical temporal networks

of human face-to-face interactions, how spatially constrained sampling, due to partial

monitoring of the various locations in which contacts can occur, impacts the estimation
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random sampling, median and 95% CI
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nodes, ranked by  s
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s
(a) random sampling, median and 95% CI
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nodes, ranked by  s
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s

(b)

random sampling, median and 95% CI
overexpressed
underexpressed

nodes, ranked by  s
tot

s

(c) random sampling, median and 95% CI
overexpressed
underexpressed

nodes, ranked by  s
tot

s

(d)

Figure 6. Contribution to the strength of nodes from the contacts occurring in a single location.

Recorded strength s (number of contacts in which a node participates) (color) in a given location,

compared to its expected strength obtained by a random selection of the same fraction of contacts

from the full network (black line: median; grey area shows 95% C.I. from 100 realizations). Nodes

are ranked by their strength stot in the full network (from highest to lowest). (a), (b) Locations 3

and 4 of the empirical network, containing respectively 22.2% and 43.7% of the total contacts. (c),

(d) locations of the synthetic model containing respectively 20% and 38.8% of the total contacts.

In location 3 of the empirical network, top ranking nodes have lower strength than would result

from random sampling. In location 4, top ranking nodes have higher strength than expected. In

synthetic networks, top ranking nodes are neither systematically under- nor over-expressed.

of the epidemic risk in the population under study. Such sampling leads to a systematic

overestimation of the epidemic threshold, i.e., to an underestimation of the epidemic risk.

Interestingly, however, this underestimation is substantially smaller than the one obtained

by a random sampling of the same fraction of contacts and it becomes negligible for

high enough coverage (when the fraction of sampled contacts is higher than ∼60%).

The qualitative behaviors obtained in resampled empirical and synthetic contact data are

similar. However, we observe some disparities due to the simplifying assumption of similar

behavior in different locations made in the model used to produce the synthetic data,

which does not hold in real settings. If specific locations in which the hubs turn out to

have most contacts are monitored, the epidemic threshold computed on partial data can

be much closer to the one obtained with the full data set than what would be expected

from the example of the synthetic data. Further investigations with more complex models

could shed more light on this issue.

The results presented here could also serve as a starting point for the development of

systematic procedures able to produce an estimate of the real epidemic risk even when
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only sampled data is available. As done recently for the case of uniform population

sampling [17], a sensible procedure would be to combine the known, sampled data

with surrogate data describing the unknown contacts taking place in the non-monitored

location. Such surrogate data could be built as surrogate timelines of contacts between

individuals present in the non-monitored location, in a way to respect the distributions

of contact and inter-contact durations measured in the monitored one: such distributions

have indeed be found to be very robust and are thus expected to be the same in different

locations [4, 14, 17, 55]. An important issue remains however open: in contrast with the

case of population sampling, one cannot easily extrapolate the number and frequency of

contacts in the non-monitored place from the data observed in the monitored area, as

they could correspond to very different amounts of overall contact activity. Additional

information concerning the specificities of the monitored and non-monitored locations

would then be necessary for this purpose in realistic settings. Further work will investigate

how to deal with this issue and to which extent possible estimates of the epidemic threshold

would depend on the assumptions made to produce surrogate data for the non-monitored

location.
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